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Subiecte - Clasa a 11-a

Problema 1. Fie şirurile (an)n≥1 şi (sn)n≥1 definite prin

a1 =
1

2
, an+1 =

a2n
a2n − an + 1

şi sn = a1 + a2 + . . .+ an, pentru orice n ≥ 1.

Studiaţi convergenţa celor două şiruri şi limitele acestora.

Problema 2. Pentru fiecare n ≥ 1 considerăm ecuaţia

En : xn + lnx = 0.

a) Arătaţi că pentru orice n ≥ 1, ecuaţia En are o unică soluţie reală pozitivă xn.
b) Determinaţi lim

n→∞
xn şi lim

n→∞
n

lnn
(1− xn).

Problema 3. Fie matricele A,B ∈ M2(C). Arătaţi că

(AB)2 = −AB2A dacă şi numai dacă (BA)2 = −BA2B.

Problema 4. Pentru matricea A ∈ Mn(C), A = (aij)1≤i,j≤n şi polinomul P ∈ C[X],
notăm AP = (P (aij))1≤i,j≤n. Fie n ≥ 2. Aflaţi polinoamele P ∈ C[X] pentru care

rang(AP ) ≤ rang(A), pentru orice A ∈ Mn(C).

(Numim polinom o funcţie P : C → C pentru care există n ∈ N şi a0, a1, . . . , an ∈ C
cu proprietatea că P (x) = a0 + a1x+ a2x

2 + . . .+ anx
n, pentru orice x ∈ C)

Timp de lucru 4 ore
Fiecare problemă va fi notată cu maxim 7 puncte
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Soluţii - Clasa a 11-a

Problema 1. Fie şirurile (an)n≥1 şi (sn)n≥1 definite prin

a1 =
1

2
, an+1 =

a2n
a2n − an + 1

şi sn = a1 + a2 + . . .+ an, pentru orice n ≥ 1.

Studiaţi convergenţa celor două şiruri şi limitele acestora.

Vasile Pop, Cluj Napoca

Soluţie. Inductiv, observăm că an ̸= 0, pentru orice n ≥ 1. Fie bn = 1
an
, pentru

orice n ≥ 1. Atunci b1 = 2 şi bn+1 = b2n − bn + 1 (1). Atunci bn+1 ≥ bn este echivalent
cu (bn − 1)2 ≥ 0, care este adevărat. Atunci (bn)n≥1 este un şir crescător cu b1 = 2
(2), deci are limită l ∈ R. Dacă l ∈ R, din (1) obţinem l = 1, ceea ce contrazice (2).
Atunci lim

n→∞
bn = ∞ şi atunci lim

n→∞
an = 0.

Relaţia (1) se poate scrie 1 − bn+1 = bn(1 − bn), deci
1
bn

= 1
bn−1

− 1
bn+1−1

, pentru

orice n ≥ 1. Dacă adunăm aceste relaţii pentru k = 1, 2, . . . , n, obţinem
∑n

k=1
1
bk

=

1− 1
bn+1−1

, ceea ce implică faptul că lim
n→∞

sn = 1.

Problema 2. Pentru fiecare n ≥ 1 considerăm ecuaţia

En : xn + lnx = 0.

a) Arătaţi că pentru orice n ≥ 1, ecuaţia En are o unică soluţie reală pozitivă xn.
b) Determinaţi lim

n→∞
xn şi lim

n→∞
n

lnn
(1− xn).

Dorian Popa, Cluj Napoca

Soluţie. a) Funcţia f : (0,∞) → R definită prin f(x) = xn + lnx este strict
crescătoare, ca sumă de funcţii strict crescătoare. Cum lim

x→0
f(x) = −∞ şi f(1) = 1,

există xn ∈ (0, 1) pentru care f(xn) = 0. Unicitatea acestuia rezultă din stricta
monotonie a lui f , care implică injectivitatea acesteia.



b) Observăm că f
(

1
n√n

)
= 1

n
− lnn

n
< 0, deci xn ∈

(
1
n√n

, 1
)
, de unde lim

n→∞
xn = 1.

Dacă notăm cu yn = − lnxn > 0, atunci avem lim
n→∞

yn = 0 şi avem nyne
nyn = n.

Funcţia g : (0,∞) → (0,∞) definită prin g(x) = xex este bijectivă (strict crescătoare,
deci injectivă, iar g(x) = y este echivalent cu ln x+ x = ln y, care are soluţii ı̂ntrucât
h(x) = lnx + x este strict crescătoare iar lim

x→0
h(x) = −∞ şi lim

x→∞
h(x) = ∞), deci

nyn = g−1(n). Atunci 1−xn = 1−e−yn

yn
·yn = 1−e−yn

yn
· 1
n
g−1(n), deci n

lnn
(1−xn) =

1−e−yn

yn
·

g−1(n)
lnn

. Dar lim
n→∞

1−e−yn

yn
= 1 şi lim

n→∞
g−1(n)
lnn

= lim
x→∞

g−1(x)
lnx

= lim
x→∞

x
ln g(x)

= lim
x→∞

x
x+lnx

= 1.

Concluzionăm că limita căutată este 1.

Problema 3. Fie matricele A,B ∈ M2(C). Arătaţi că

(AB)2 = −AB2A dacă şi numai dacă (BA)2 = −BA2B.

Mihai Opincariu, Brad

Soluţie. Datorită simetriei, o implicaţie este suficientă. Avem AB(AB+BA) = O2,
deci det(AB+BA) = 0, altfel am avea AB = O2, deci det(AB+BA) = det(BA) = 0,
contradicţie.

Aplicăm urma pe relaţia dată şi avem Tr ((AB)2) = −Tr (A2B2). Atunci Tr ((AB +
BA)2) = Tr ((AB)2 + (BA)2 + AB2A+BA2B) = 0.

Relaţia lui Camilton-Hayley aplicată matricei AB+BA este (AB+BA)2−Tr (AB+
BA)+det(AB+BA)I2 = O2. Aplicând urma pe această relaţie şi ţinând cont de cele
demonstrate, avem Tr (AB +BA) = 0. Atunci (AB +BA)2 = O2, de unde deducem
concluzia.

Problema 4. Pentru matricea A ∈ Mn(C), A = (aij)1≤i,j≤n şi polinomul P ∈ C[X],
notăm AP = (P (aij))1≤i,j≤n. Fie n ≥ 2. Aflaţi polinoamele P ∈ C[X] pentru care

rang(AP ) ≤ rang(A), pentru orice A ∈ Mn(C).

Cristi Săvescu, Cluj Napoca

Soluţie. Evident polinomul P = 0 verifică. Alte polinoame constante nu verifică
din cauza cazului A = On. Căutăm mai departe polinoame neconstante de forma

P (X) =
m∑
k=0

ak ·Xk, unde m ≥ 1 şi am ̸= 0.



Fie A o matrice cu blocul 2× 2 din stânga sus egal cu

(
xz x
yz y

)
şi restul elementelor

nule, unde x, y, xz, yz ∈ R∗ nu sunt rădăcini ale lui P (adică aparţin lui R∗ fără
un număr finit de valori). Pentru orice astfel de matrice avem rang(A) = 1. Asta

implică P (xz)P (y) = P (x)P (yz). Atunci avem P (x)
P (y)

= P (xz)
P (yz)

. Pentru z → ∞ obţinem
P (x)
P (y)

= xm

ym
, de unde deducem că P (x)

xm este constant.

Pentru x → ∞, obţinem că această constantă este am, aşadar P (X) = am ·Xm. În
chestiuni de rang, putem ignora parametrul nenul am.

Dacă n = 2, observăm că orice polinom de forma P = Xm verifică:

1. dacă rang(A) = 2, nu avem ce demonstra;

2. dacă rang(A) = 1, atunci A =

(
a b
c d

)
, unde ad = bc şi a, b, c, d nu sunt

toate nule. Atunci amdm = bmcm şi am, bm, cm, dm nu sunt toate nule, deci
rang(AP ) = 1;

3. dacă rang(A) = 0, avem A = O2 şi atunci AP = O2.

Pentru n ≥ 3, considerăm matricea T =

0 1 3
1 2 4
2 3 5

 şi observăm că rang(T ) = 2.

Mai departe, avem TP =

 0 1 3m

1 2m 4m

2m 3m 5m

, deci detTP = 9m+8m−12m−5m. Conform

ipotezei aplicată matricei TP , avem rang(TP ) ≤ 2, deci detTP = 0. Atunci 8m+9m =
5m + 12m. Observăm că m = 1 este soluţie. Pentru m ≥ 2, funcţia f(x) = xm este
strict convexă, deci f(x+ 3)− f(x) este strict crescătoare. Atunci f(9) > f(5), deci

egalitatea nu poate avea loc. Atunci, pentru matricea A =

(
T 0
0 0

)
, deducem că

singurul polinom care verifică ı̂n acest caz este P = X.

În concluzie, dacă n = 2, polinoamele de forma P = c ·Xm, cu c ∈ C∗ şi m ∈ N∗ sunt
cele care verifică, iar pentru n ≥ 3, polinoamele de forma P = c ·X, cu c ∈ C∗ sunt
cele care verifică.


